Mean Value Results

We look at applications of Rolle's Theorem, the Mean Value Theorem and Cauchy's Mean Value Theorem.

1. State Rolle's Theorem.

Suppose that f(x) is continuous on [a, b], is twice differentiable on (a, b) and has three distinct zeros in [a, b]. Prove that there exists $c \in (a, b)$ such that f''(c) = 0.

Can you generalise this result? Can you give a proof of your general result?

(**Hint**: For a general result use proof by induction)

- 2. In a question on Sheet 4 it was seen that $e^x = 4x^2$ has at least 3 real solutions. Prove that it has **exactly** 3 real distinct solutions.
- 3. State the Mean Value Theorem.

In each of the following examples find, if possible, an explicit value for $c \in (a, b)$ satisfying the *formula* of the Mean Value Theorem.

In each case explain whether the Mean Value Theorem can be applied or not.

- i) f(x) = x (x 2) (x 4), on [1,3].
- ii) $f(x) = 1/x^2$, on [-1, 1].
- iii) $f(x) = x^{1/3}$, on [-1, 1].

4. i) Show that

$$\left|\sin^2 b - \sin^2 a\right| \le |b - a|$$

for all $a, b \in \mathbb{R}$.

Careful. If you apply the Mean Value Theorem without thought you will get an unwanted factor of 2 on the right hand side.

ii) Show that

$$\tan b - \tan a \ge |b - a|$$

for all $a, b \in (-\pi/2, \pi/2)$.

iii) Show that

 $\cosh x \ge 1$

for all $x \in \mathbb{R}$ and deduce

$$|\sinh b - \sinh a| \ge |b - a|$$

for all $a, b \in \mathbb{R}$.

iv) Show that

$$|\tanh b - \tanh a| \le |b - a|$$

for all $a, b \in \mathbb{R}$.

- a) sin x is strictly increasing on $[-\pi/2, \pi/2]$,
- b) $\cos x$ is strictly decreasing on $[0, \pi]$,
- c) $\tan x$ is strictly increasing on $(-\pi/2, \pi/2)$.
- ii) What result from the notes do you need to quote to justify the existence of a function

$$\operatorname{arcsin}: [-1,1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2}\right],$$

satisfying $\sin(\arcsin x) = x$ for all $x \in [-1, 1]$?

iii) Explain how to define

a)
$$\operatorname{arccos} : [-1, 1] \to [0, \pi]$$
,

b) $\arctan : \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

6. Using the Mean Value Theorem prove that

$$x - \frac{x^2}{2} < \ln\left(1 + x\right) < x - \frac{x^2}{2} + \frac{x^3}{3},\tag{1}$$

for x > 0.

(If necessary you may assume a result from the lectures that $e^x > 1 + x$ for all $x \neq 0$.)

Hint Define an appropriate functions of t on the interval [0, x], one for the lower bound in (2) the other for the upper.

7. State the Cauchy Mean Value Theorem.

Assume that f is continuous on [a, b] and differentiable on (a, b). Prove that

i) there exists $c \in (a, b)$ such that

$$f(b) = f(a) + (e^{b-c} - e^{a-c}) f'(c).$$

Hint Rearrange this equality so that a and b occur on one side, c on the other. You should then deduce what function has to be chosen for g in Cauchy's Mean Value.

ii) Assuming further that f(x) > 0 and $f'(x) \neq 0$ on [a, b] prove that there exists $c \in (a, b)$ such that

$$f(b) = f(a) + \ln\left(\frac{f(b)}{f(a)}\right) f(c) \,.$$

Strangely no derivatives appear anywhere!

iii) Assuming that $f'(x) \neq 0$ for all $x \in (a, b)$ prove that there exists $c \in (a, b)$ such that

$$f(b) = f(a) + e^{f(b) - f(c)} - e^{f(a) - f(c)}.$$

Again no derivatives appear.

Inverses

We have proven the existence of the inverse of trig functions in Question 5 and of the hyperbolic trig functions in Question 7, Sheet 5. We now ask if they are differentiable.

- 8. State the Theorem on the Differentiation of Inverse functions.
 - i) Prove that

$$\cos\left(\arcsin y\right) = \sqrt{1 - y^2}$$

for -1 < y < 1.

Hint: Try to use $y = \sin(\arcsin y)$ by relating cos to sin through $\sin^2 \theta + \cos^2 \theta = 1$ for all θ .

ii) Use the Theorem on the Differentiation of Inverse functions to prove that

$$\frac{d}{dy}\arcsin y = \frac{1}{\sqrt{1-y^2}}$$

on (-1, 1),

iii) Give similar results for

a)
$$\frac{d}{dy} \arccos y$$
 on $(-1, 1)$,
b) $\frac{d}{dy} \arctan y$ on \mathbb{R} .

9. Prove that

$$\arctan x > \frac{x}{1 + x^2/3}$$

for x > 0.

Hint This question is here as an application of the derivative of arctan found in the previous question.

10. i) a) Prove that

$$\cosh\left(\sinh^{-1}y\right) = \sqrt{1+y^2}$$

for all $y \in \mathbb{R}$.

b) Use the Theorem on the Differentiation of Inverse functions to prove that

$$\frac{d}{dy}\sinh^{-1}y = \frac{1}{\sqrt{1+y^2}}$$

for all $y \in \mathbb{R}$.

$$\frac{d}{dy}\cosh^{-1}y = \frac{1}{\sqrt{y^2 - 1}}$$

for y > 1.

$$\frac{d}{dy} \tanh^{-1} y$$

for $y \in (-1, 1)$.

L'Hôpital's and Chain Rule

11. State L'Hôpital's Rule.

Use L'Hôpital's Rule to evaluate

i)

$$\lim_{x \to 0} \frac{\ln (1-x) + \ln (1+x)}{x^2},$$
ii)

$$\lim_{x \to 0} \frac{(1+x) \ln (1-x) - (1-x) \ln (1+x) + 2x}{x^3},$$
iii)

$$\lim_{x \to 0} \frac{\arcsin x - x}{x^3},$$
iv)

$$\lim_{x \to 0} \frac{\sinh^{-1} x - x}{x^3}.$$

12. State the Chain Rule for Differentiation.

Prove

i)

$$\frac{d}{dy} \left(\tanh^{-1} \left(\sin y \right) \right) = \frac{1}{\cos y}$$
for $y \in \left(-\pi/2, \pi/2 \right)$.
ii)

$$\frac{d}{dy} \left(\sinh^{-1} \left(\tan y \right) \right) = \frac{1}{\cos y}$$

for $y \in (-\pi/2, \pi/2)$.

iii) Can you give a similar example for \cosh^{-1} with an appropriate trigonometric function?

Additional Questions

13. Using the Mean Value Theorem prove that

$$\frac{1}{1-x+\frac{x^2}{3}} > e^x > \frac{1}{1-x+\frac{x^2}{2}},$$

the first inequality for 0 < x < 1, the second for all x > 0.

Hint Examine each inequality separately and multiply up.

14. An example of the use of L'Hôpital's Rule, stated but left to the student to check, was

$$\lim_{x \to 0} \frac{\sin x - x}{x^3} = -\frac{1}{6}.$$

Use this result to show that the function

$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{if } x \neq 0\\ 1 & \text{if } x = 0, \end{cases}$$

is differentiable at x = 0 and find the value of the derivative at x = 0.